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ABSTRACT: Using a non-Newtonian mathematical model for the blood flow in large vessels – elaborated 
and presented already by us in some previous papers we make some remarks on the wall shear stress 
(WSS) in the case of a human abdominal aortic aneurysm (AAA). We focused on the mechanical conditions 
which would lead to the rupture of the vascular vessel with aneurysm. 

The original feature is that the established condition is not backed on the real blood flow but only on the 
data got via the above mentioned model. This leads to a more suitable tool of risk rupture prediction which 
avoids almost completely the investigation in vivo. 
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INTRODUCTION 
In this research the blood is considered a non-

Newtonian fluid, with variable coefficient of viscosity, 

under an unsteady (pulsatile) flow regime connected 

with the rhythmic pumping of the blood by the heart. 

We also admit the incompressibility and 

homogeneity of the blood while the exterior body 

forces (as gravity) are neglected. Concerning the 

limiting walls of the vessels, we accept their 

viscoelastic behavior, the whole configuration having 

an axial symmetric geometry versus the vertical axis 

Oz. 

According to this model the flow equations result 

from the general Cauchy equations 
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where the stress tensor DIT )(2 RBCsp   , 

I being the unit tensor, the scalar p is the physical 

pressure, D is the rate of strain tensor, s  representing 

the (constant) plasma viscosity while RBC  is given 

by the Cross model, i.e., 
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with   the shear rate, 
*

0  the viscosity coefficient of 

the blood, k a time constant and n the index for a shear 

thinning behavior. 

The above evolution equations are joined to some 

boundary conditions which express the existence of a 

pressure gradient along Oz axis according to the heart 

beats and implicitly to the rhythmic blood pushing into 

the vessel, a feature which is important in approaching 

the large vessels. Thus we have: 

0
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v
and 0u  for 0r , 

while at r = R, due to the viscoelastic behavior of the 

vessel's wall, the velocity of the blood must be equal to 

the “displacement” velocity of the wall. The boundary 

conditions at "edges" z = 0 and z = L of the vessel, 

agree with the physiological pulse velocity given by a 

periodic time-varying function . 

To describe the viscoelastic behavior of the vessel's 

wall we have used the generalized Maxwell model, 

which is the most general form of the linear model for 

viscoelasticity ([4], [5]). 

Evaluation of the stress vector T


 in the points 

of the aneurysm boundary 

Mostly, we intend to set up a mechanical condition 

whose fulfillment would lead with a high probability to 

the rupture of the aneurysm and consequently to the 

damage of the vessel wall of an AAA. We will focus on 

the case of a human abdominal aortic with a double 

aneurysm(AAA) considered by Finol et. al. [6]. 

The above mentioned rupture takes place when the 

WSS evaluated on the boundary of aneurysm 

overpasses the internal cohesion forces assessed on the 

same boundary of the aneurysm. But these internal 

cohesion forces are connected with the projection of 

the stress vector T


(Maxwell model) on the unit 

tangent to the boundary vector t


. 

We accept, in a plane const , that the 

equation of the vessel wall (with aneurysm) could be 

expressed in a Cartesian coordinate system formed by 

the radial axis r and the axis of symmetry z by the 

equation )(rzz  . 

The expression for the stress vector is nT


T ,  

where T is the stress tensor in the Maxwell model 

while n


 is the normal unit vector at the considered 

point, namely 
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The components of the stress tensor T, using the 

general Maxwell model for viscoelasticity are 

ijijij pIsT  , where ijs  are the components of the 

stress deviator ))((2
4
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mmqG  , e being the 

rate of strain deviator ( Iεεe )(3/1 Tr ), ε being 

the rate of strain tensor, 
0G  the shear modulus, 

00G  

the long term shear modulus.  

 

Thus we have for the components of the stress 

tensor (Maxwell) 
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, m ( 4,3,2,1,0m ) being 

coefficients of the relative rigidity of the wall and mq  

are parameters attached to the extension of the wall, 

( 1
4

0


m

mq ), while p is the pressure. 

 We denoted by u and v the components of the 

blood velocity v


 on the directions of r and z 

respectively. Obviously all the components jT , 

,, zrj   are zero and also 0





 (due to the 

axial symmetry) 
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while the unit normal vector to the curve 

)(rzz  ( const ) is 
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and the unit tangent vector to the same curve (in a 

plane const ) is 
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we can write 
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     Then, in the points of the aneurysm )(rzz  , the 

projection of the Maxwell stress vector T


 on the 

direction of the unit tangent vector to the vessel wall 

t


will be 
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This product would estimate the internal cohesion 

forces in the points of the vessel wall with aneurysm. 

Concerning the wall shear stress, observing the 

conditions of the considered Cross law for blood, we 

could write: 
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Consequently the “rupture” of the vessel wall 

would take place if the WSS overpasses tT

 (both 

considered in absolute value) 
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In the sequel we will try to rewrite this exact 

analytical condition under a more convenient form for 

practical use. 

1. Construction of an analytical 

approximation of WSS 

In what follows, we intend to build up an analytical 

expression for approximating the WSS considered, at a 

certain moment, as a function of the axial coordinate z. 

To achieve that, we will use the numerical data of the 

joined table (table 1) and we interpolate the WSS along 

the whole boundary of the aneurysm. 

Denoting then by 
iWSS the values )( izWSS  at a 

certain fixed moment (where 
iz  are axial coordinates 

of the points 5,4,3,2,1i ), supposing 

)(2 zCWSS , we will introduce the spline 

interpolation function )()( 2 zCzS   on the whole 

boundary. 

 Table 1. 

Values of WSS (at a certain time t = 7.7s) 
at the 5 considered points as shown on figure 1 

Points z (cm) WSS (N/m
2
) 

1 1 -1.25 

2 2 0.175 

3 3 -2.55 

4 5 0.16 

5 7 -2.45 

 

This type of approximation made by cubic 

functions, beside the fact that ensures a minimum 

curvature of it, could “preserve” the shape of the exact 

WSS and consequently it has the extremum points close 

to those of the exact WSS [8]
1
. That is why we are 

using it, our final goal being to assess the absolute 

minimum and maximum of WSS for anticipating a 

possible “rupture” of the vessel with aneurysm. 

 Denoting by )('' ii zSM  , 

6,5,4,3,2,1,0i  (where the point 0 and 6 correspond 

to the “farfield” of the aneurysm – where the deviation 

of the WSS is practically absent
2
 and consequently 
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if 1 iii zzh , the spline function joined to the “i” 

subinterval, is given by [9] 
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1 For improving the shape preservation, instead of a cubic spline 

interpolant it can be used also the variant of the pchip interpolant [8]. 
2 Instead of the genuine complete WSS we will work with its 

“deviation” versus the normal artery (without aneurysm) and 

consequently the fulfillment of the required conditions is assured. 

 

By imposing the additional condition 

060  MM  (what is in complete accord with the 

absence of the aneurysm “at farfield”
1
), we have also 

assured the uniqueness of this spline interpolation 

function )(zS [8]. 

Concerning the constants iM  they can be obtained 

by solving the following algebraic linear system [9] 
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Concerning the error of the approximation it is of 

the same order as of the certain powers of 

)(max 1 ii
i

zzh , the degree of accuracy 

increasing together with the regularity of WSS [9]. 

If we want to calculate the critical points of the 

spline approximation for WSS, from 
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 The critical points, for each 

subinterval ),( 1 ii zz  , are given by 

)(

)(

1

11

2,1










ii

iiiiii

MM

MzMz
z . 

The relative extremum values of this approximation 

(and implicitly of WSS) should be found among the 

values of 

)( 2,1

i

i zS , 6,5,4,3,2,1i , 

where we must consider only those 

),( 12,1 ii

i zzz  (at least approximately). 

 

Then by considering )(min 2,1

i

i
i

zS this should be 

the limit value of WSS which once overpassed by the 

internal cohesion forces evaluated on the aneurysm 

boundary ( tT

 ) the rupture takes place. Of course 

this represents a global condition not a local one. 
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Concerning the projection of the stress vector ( T


) 

on the boundary tangent ( t


) using the Maxwell 

viscoelastic behavior for the blood walls (aneurysm 

included) it can be obtained via COMSOL 3.3 [3]. 

In our real clinical study a human abdominal aortic 

with a double aneurysm(AAA), as it can be found in 

the paper elaborate by Finol a.o. [6], the linear 

algebraic system was solved by QuickMath and the 

solutions are 447.120 M , 395.111 M , 

085.112 M , 045.83 M , 352.64 M , 

383.95 M , 067.156 M . 

Immediately we get for the critical points the 

coordinates (keeping those whose values are close to 

the inside of the considered subinterval ),( 1 ii zz  ) 

402.11 z , 29.1)( 11 zS ; 305.22 z , 

55.1)( 22 zS ; 732.33 z , 59.1)( 33 zS ; 

25.85 z , 984.9)( 55 zS ; 244.86 z , 

503.0)( 66 zS . Concerning )(min 2,1

i

i
i

zS  it is 

equal to 0.503. 

This should be compared to the maximum 

value of tT

  evaluated on the boundary. As this 

maximum value of the internal cohesion forces (got via 

COMSOL Multiphysics) is 6.175, we may state that at 

the considered moment t = 7.7s there is no global 

rupture risk. 

Of course these steps must be repeated at all the 

moments, but an appropriate soft could solve this 

feature without any special shortcomings. 

 

Numerical simulation 

A numerical simulation for this particular situation 

has been already made by us using COMSOL 

Multiphysiscs 3.3 ([3]). To avoid the transient effect of 

the initial conditions the final results of our analysis are 

presented only for the last 5 periods, although the time 

integration interval was t [0,10s].Choosing 5 

particular points on the vessel wall of the AAA and 

evaluating the WSS at these points, it has been shown 

that WSS reaches its maximum value in a point located 

between the two aneurysms (marked with a “red 

point”) and at the exit point of the second one (marked 

with an “orange point”) as it can be seen on figure 1. 

The values of the WSS (through 5 seconds) in these 5 

points are given in figures 2-6. 

 

 

 
Fig. 1 Surface distribution of the WSS in the case of 
considered AAA 

 

At t = 7.7s, the maximum value of the WSS – at the 

“red point” is around 2.55, respectively 2.45 at the 

“orange point”. The “-“ sign shows that the wall shear 

stress acts in opposite direction to that of the blood 

flow. 

 
Fig. 2 Variation (5 periods) of wall shear stress at the 

entry point of the aneurysm with the smaller diameter 
(green point on figure 1) 

 

 
Fig. 3 Variation (5 periods) of wall shear stress in the 

middle of the aneurysm with the smaller diameter 
(purple point on figure 1) 



 
Mathematical and numerical model for blood flow in large vessels with some pathology 

 
 

Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 
Vol. 24, issue 2, 2014, pp. 265-270 
© 2014 Vasile Goldis University Press (www.studiauniversitatis.ro) 

269 

 
Fig. 4 Variation (5 periods) of wall shear stress at the 

exit of the aneurysm with the smaller diameter (red 
point on figure 1) 

 

 
Fig. 5 Variation (5 periods) of wall shear stress in the 

middle of the aneurysm with the larger diameter (blue 
point on figure 1) 

 

 
Fig. 6. Variation (5 periods) of wall shear stress at the 

exit of the aneurysm with the larger diameter (orange 
point on figure 1) 

 

According to Papaioannou & Stefanos [7] the 

“normal” value of the WSS in the case of the arteries is 

around 1 N/m
2
. 

We remark that the values of WSS got through our 

numerical simulations and experiments in the previous 

research [3] are in total accord with those presented in 

the work of Finol et al. [6]. This fact validates the 

accuracy of the use of the Cross type non-Newtonian 

model for the blood flow together with the viscoelastic 

behavior (Maxwell) of the vessel walls. 

 

CONCLUSIONS 
We remark that this approach leads to a global 

rupture risk prediction. In our particular clinical case, 

in spite of the fact that WSS overpasses the internal 

cohesion forces at the point 5 (see table 2, where a 

rupture risk really exists) we may state that, globally 

speaking, there is no rupture risk for the considered 

artery. 
Table 2. 

 WSS evolution in time versus the 
corresponding internal cohesion forces at point 5 

t (s) 
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-
0.
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-
0.
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-
0.
5
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-
0.
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7 

-
0.
5
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-
0.
6
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-
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0
7 
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-
0.
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-
0.
3
9 

-
0.
5
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tT


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m

2
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-
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1
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-
0.
6
5 

-
3.
3
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-
3.
3
7 

5.
4
1 

-
9.
3
6 

-
1
4.
9 

2.
7
2 

-
1.
1
9 

-
0.
6
8 

-
0.
7
7 

We also remark that at point 4, where the diameter 

of the aneurysm is the greatest there is no risk of 

rupture, what implies the conclusion that the diameter 

of the aneurysm is not the essential parameter for the 

evaluation of the rupture-risk. 

In the future we intend to try to set up a medical 

soft for getting the global condition of this rupture-risk. 
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